
IT230 WEB TECHNOLOGIES

FINAL STUDY GUIDE

WE WILL COVER ALL THE CHAPTERS
Before Midterm

 HTTP

 XHTML

 CSS

 JavaScript

 DOM

After Midterm

 PHP 5 introduction

 PHP 5 OOP

 PHP database & errors

 Servlets

 XML

 JSP

 Database & JSP

QUESTIONS TYPES:

These are just examples of the major questions types:

 MCQs,

 True/False,

 Essay

 Short Answer,

 What is the output of the program or the function,

 Write a code.

Question Type Count Marks

MCQs 20 10

T/F 20 10

Essay 2 8

Short Answer 3 6

Find Output1 3 6

Coding2 2 10

 Total 50

1 What is the output questions will be on (JavaScript, Servlets and PHP)

2 Write a code question will be on (HTML, PHP)

TOPICS

Week

2 TCP,IP,DNS,UDP, HTTP request / response (URI, MIME), client

caching

3 HTML tags: div, p, span, table, ol, ul, img, a, form, input, … (coding)

4 Different methods of embedding CSS, Selector Strings (id, class, ...),

CSS Box Model

5 Window.alert, prompt / Functions, variables, if, loop, operators, Array,

Build-in objects

6 Events: onclick, onmouseover, onmouseout, onfoucs, onblur / Event

Propagation / Modifying Element Style/

Document tree : Node / Document tree : document

8 Managing Variables/ Data types/SuperGlobals/

Arrays/Operators/Control structure (coding)

9 Design patterns (Strategy pattern, singleton pattern, factory pattern,

observer pattern) (concept)

Read user input (coding)

TECHNIQUES TO MAKE SCRIPTS “SAFE” (concept)

Cookies & sessions(coding)

10 Mysql Buffered Versus Unbuffered Queries (concept)

Connect to mysql (coding)

Error versus Warning (concept)

11 Server side programming/Servlets vs Applications/Servlet Life Cycle

(concept)/ Sessions/Cookies

12 XML syntax/ XML Document (how to write XML

document) / Java based DOM (concept)

13 Overview of JSP page components /JSP & servlet (the concept)

Web Applications (Concept)/JSP Expression Language

MVC (Concept)

14 JDBC

Seven Steps for Database Access(Concept)

Prepared Statements (Concept)

Callable Statements (Concept)

Database Transactions (Concept)

week 8 [coding]

IT230
Dr Mohamed Habib

PHP 5 Basic Language

• Managing Variables

PHP 5 Basic Language

• Managing Variables

PHP 5 Basic Language

• SuperGlobals

Example

<html>  
<body> 
 
<form action="welcome.php" method="post">  
Name: <input type="text" name="name">
  
E-mail: <input type="text" name="email">
  
<input type="submit"> 
</form>  
 
</body> 
</html>

HTML page

PHP page [welcom.php]

<html>  
<body>  
 
Welcome <?php echo $_POST["name"]; ?>
  
Your email address is: <?php echo $_POST["email"]; ?>  
 
</body>  
</html>

page1 in HTML form

third.php

another
code

third.php

PHP 5 Basic Language

• Basic Data Types
– Integer
– Floating Point
– Strings
– Booleans
– Null

PHP 5 Basic Language

• Arrays

PHP 5 Basic Language

PHP 5 Basic Language

• Reading array values 
 

PHP 5 Basic Language

• Accessing Nested Arrays  
 

PHP 5 Basic Language

• Traversing Arrays Using foreach 
 

PHP 5 Basic Language

• Traversing Arrays Using list() and each()  
 

PHP 5 Basic Language

•Operators
• Numerical Operators
• Assignment Operators
• Comparison Operators
• Logical Operators
• Bitwise Operators
• Negation Operators
• Increment/Decrement Operators
• The Cast Operators
•The Silence Operator 
 
 
 
 
 
 

PHP 5 Basic Language

• CONTROL STRUCTURES  
 

PHP 5 Basic Language

• CONTROL STRUCTURES  
 

PHP 5 Basic Language

• Loop Control Structures 
 

PHP 5 Basic Language

• Loop Control Structures 
 

PHP 5 Basic Language

• Code Inclusion Control Structures 
 

week9

IT230
Dr Mohamed Habib

Advanced OOP and Design  
Patterns

• DESIGN PATTERNS

• When designing software, certain programming
patterns repeat themselves. Some of these have been
addressed by the software design community and have
been given accepted general solutions. These repeating
problems are called design patterns.

Advanced OOP and Design  
Patterns

• Strategy Pattern
• The strategy pattern is typically used when your

programmer’s algorithm should be interchangeable with
different variations of the algorithm. For example, if you
have code that creates an image, under certain
circumstances, you might want to create JPEGs and under
other circumstances, you might want to create GIF files.

• The strategy pattern is usually implemented by declaring
an abstract base class with an algorithm method, which is
then implemented by inheriting concrete classes. At some
point in the code, it is decided what concrete strategy is
relevant; it would then be instantiated and used wherever
relevant.

Advanced OOP and Design  
Patterns

• Strategy Pattern

Advanced OOP and Design  
Patterns

• Singleton Pattern
• The singleton pattern is probably one of the best-

known design patterns. You have probably encountered
many situations where you have an object that handles
some centralized operation in your application, such as
a logger object. In such cases, it is usually preferred for
only one such application-wide instance to exist and for
all application code to have the ability to access it.

• Specifically, in a logger object, you would want every place in the
application that wants to print something to the log to have access
to it, and let the centralized logging mechanism handle the
filtering of log messages according to log level settings. For this
kind of situation, the singleton pattern exists.

Advanced OOP and Design  
Patterns

• Factory Pattern
• Polymorphism and the use of base class is really the

center of OOP. However, at some stage, a concrete
instance of the base class’s subclasses must be created.
This is usually done using the factory pattern. A
Factory class has a static method that receives some
input and, according to that input, it decides what
class instance to create (usually a subclass).

Advanced OOP and Design  
Patterns

• Factory Pattern
• Say that on your web site, different kinds of users can log

in. Some are guests, some are regular customers, and others
are administrators. In a common scenario, you would have a
base class User and have three subclasses: GuestUser,
CustomerUser, and AdminUser. Likely User and its subclasses
would contain methods to retrieve information about the
user (for example, permissions on what they can access on
the web site and their personal preferences).

• The best way for you to write your web application is to use
the base class User as much as possible, so that the code
would be generic and that it would be easy to add
additional kinds of users when the need arises.

Advanced OOP and Design  
Patterns

• Observer Pattern
• PHP applications, usually manipulate data. In many cases, changes to one piece of

data can affect many different parts of your application’s code. For example, the
price of each product item displayed on an e-commerce site in the customer’s
local currency is affected by the current exchange rate. Now, assume that each
product item is represented by a PHP object that most likely originates from a
database; the exchange rate itself is most probably being taken from a different
source and is not part of the item’s database entry. Let’s also assume that each
such object has a display() method that outputs the HTML relevant to this product.

• The observer pattern allows for objects to register on certain events
• and/or data, and when such an event or change in data occurs, it is automatically
• notified. In this way, you could develop the product item to be an observer
• on the currency exchange rate, and before printing out the list of items, you
• could trigger an event that updates all the registered objects with the correct
• rate. Doing so gives the objects a chance to update themselves and take the
• new data into account in their display() method

Advanced OOP and Design  
Patterns

• Observer Pattern
• The observer pattern allows for objects to register on

certain events and/or data, and when such an event or
change in data occurs, it is automatically notified. In
this way, you could develop the product item to be an
observer on the currency exchange rate, and before
printing out the list of items, you could trigger an
event that updates all the registered objects with the
correct rate. Doing so gives the objects a chance to
update themselves and take the new data into account
in their display() method

How to Write a Web Application with PHP

• USER INPUT coding

How to Write a Web Application with PHP

• USER INPUT
coding

How to Write a Web Application with PHP

• USER INPUT coding

How to Write a Web Application with PHP

• TECHNIQUES TO MAKE SCRIPTS “SAFE”
• Input Validation

– For different kinds of input, you can use different
methods. For instance, if you expect a parameter
passed with the HTTP GET method to be an integer,
force it to be an integer in your script:

concept

How to Write a Web Application with PHP

• TECHNIQUES TO MAKE SCRIPTS “SAFE”
• Input Validation

– Everything other than an integer value is
converted to 0. But, what if $_GET['prod_id']

doesn’t exist? You will receive a notice
because we turned the error_level setting up. A
better way to validate the input would be

concept

How to Write a Web Application with PHP

• TECHNIQUES TO MAKE SCRIPTS “SAFE”
• HMAC Verification
• If you need to prevent bad guys from tampering with

variables passed in the URL (such as for a redirect as
shown previously, or for links that pass special
parameters to the linked script), you can use a hash, as
shown in the following script:

concept

How to Write a Web Application with PHP

• TECHNIQUES TO MAKE SCRIPTS “SAFE”
• Input Filter

The filter_input() function gets an external variable (e.g. from
form input) and optionally filters it.
This function is used to validate variables from insecure sources,
such as user input.

Example
Check if the external variable "email" is sent to the PHP page, through the
"get" method, and also check if it is a valid email address:
<?php  
if (!filter_input(INPUT_GET, "email", FILTER_VALIDATE_EMAIL)) {  
 echo("Email is not valid");  
} else {  
 echo("Email is valid");  
}  
?>

concept

How to Write a Web Application with PHP

• TECHNIQUES TO MAKE SCRIPTS “SAFE”
• Working with Passwords concept

How to Write a Web Application with PHP

• COOKIES
What is a Cookie?

A cookie is often used to identify a user. A cookie is a small file that the
server embeds on the user's computer. Each time the same computer
requests a page with a browser, it will send the cookie too. With PHP, you
can both create and retrieve cookie values.

Create Cookies With PHP
A cookie is created with the setcookie() function.

Syntax
setcookie(name, value, expire, path, domain, secure, httponly);
Only the name parameter is required. All other parameters are
optional.

coding

• The following example
creates a cookie named
"user" with the value "John
Doe". The cookie will
expire after 30 days
(86400 * 30). The "/"
means that the cookie is
available in entire website
(otherwise, select the
directory you prefer).

• We then retrieve the value
of the cookie "user" (using
the global variable
$_COOKIE). We also use
the isset() function to find
out if the cookie is set:

<?php  
$cookie_name = "user";  
$cookie_value = "John Doe";  
setcookie($cookie_name, $cookie_value, time() +
(86400 * 30), "/"); // 86400 = 1 day  
?>  
<html>  
<body>  
 
<?php  
if(!isset($_COOKIE[$cookie_name])) {  
 echo "Cookie named '" . $cookie_name . "' is
not set!";  
} else {  
 echo "Cookie '" . $cookie_name . "' is set!

";  
 echo "Value is: " . $_COOKIE[$cookie_name];  
}  
?>  
 
</body>  
</html>

coding

Modify a Cookie Value
To modify a cookie, just set (again) the cookie using the setcookie()
function:
Example
<?php  
$cookie_name = "user";  
$cookie_value = "Alex Porter";  
setcookie($cookie_name, $cookie_value, time() + (86400 * 30),
"/");  
?>  
<html>  
<body>  
 

coding

Delete a Cookie
To delete a cookie, use the setcookie() function with an expiration date in
the past:
Example
<?php  
// set the expiration date to one hour ago  
setcookie("user", "", time() - 3600);  
?>  
<html>  
<body>  
 
<?php  
echo "Cookie 'user' is deleted.";  
?>  
 
</body>  
</html>

coding

How to Write a Web Application with PHP

• COOKIES

coding

How to Write a Web Application with PHP

• SESSIONS

What is a PHP Session?

When you work with an application, you open it, do some changes, and
then you close it. This is much like a Session. The computer knows who
you are. It knows when you start the application and when you end. But
on the internet there is one problem: the web server does not know
who you are or what you do, because the HTTP address doesn't
maintain state.

Session variables solve this problem by storing user information to be
used across multiple pages (e.g. username, favorite color, etc). By
default, session variables last until the user closes the browser.
So; Session variables hold information about one single user, and are
available to all pages in one application.

coding

How to Write a Web Application with PHP

• SESSIONS
A session is started with the
session_start() function.

Session variables are set with the
PHP global variable: $_SESSION.

<?php  
// Start the session  
session_start();  
?>  
<!DOCTYPE html>  
<html>  
<body>  
 
<?php  
// Set session variables  
$_SESSION["favcolor"] = "green";  
$_SESSION["favanimal"] = "cat";  
echo "Session variables are set.";  
?>  
 
</body>  
</html>

coding

How to Write a Web Application with PHP

• SESSIONS
Get PHP Session Variable Values
<?php  
session_start();  
?>  
<!DOCTYPE html>  
<html>  
<body>  
 
<?php  
// Echo session variables that were set on previous page  
echo "Favorite color is " . $_SESSION["favcolor"] . ".
";  
echo "Favorite animal is " . $_SESSION["favanimal"] . ".";  
?>  
 
</body>  
</html>

coding

Modify a PHP Session Variable

<?php  
session_start();  
?>  
<!DOCTYPE html>  
<html>  
<body>  
 
<?php  
// to change a session variable, just overwrite
it  
$_SESSION["favcolor"] = "yellow";  
print_r($_SESSION);  
?>  
 
</body>  
</html>

coding

How to Write a Web Application with PHP

• SESSIONS

Destroy a PHP Session
<?php  
session_start();  
?>  
<!DOCTYPE html>  
<html>  
<body>  
 
<?php  
// remove all session variables  
session_unset();  
 
// destroy the session  
session_destroy();  
?>  
 
</body>  
</html>

coding

week 10

IT230
Dr Mohamed Habib

Objectives

• Chapter 6: Databases with PHP 5 
Chapter 5: Error Handling

Databases with PHP 5

• Connections

coding

Example

Here, the ������	(���(��� function connects to ���(
������ with the user
name �����, an empty password, and selects the �����)� database as the
default database. If the connect fails,������	(���(��� returns ����",
and ������	(���(�	������ returns a message saying why it could not
connect.

coding

Example

When using the object-oriented interface, you can also
specify your connection parameters by passing them to
the constructor of the ������ object:

Databases with PHP 5

• Buffered Versus Unbuffered Queries
• Buffered queries will retrieve the query results and

store them in memory on the client side, and subsequent
calls to get rows will simply spool through local memory.

• Buffered queries have the advantage that you can seek in
them, which means that you can move the “current row”
pointer around in the result set freely because it is all in
the client. Their disadvantage is that extra memory is
required to store the result set, which could be very
large, and that the PHP function used to run the query
does not return until all the results have been retrieved.

Databases with PHP 5

• Buffered Versus Unbuffered Queries
• Unbuffered queries , on the other hand, limit you to a

strict sequential access of the results but do not
require any extra memory for storing the entire result
set. You can start fetching and processing or displaying
rows as soon as the MySQL server starts returning them.
When using an unbuffered result set, you have to
retrieve all rows with mysqli_fetch_row or close the
result set with mysqli_free_result before sending any
other command to the server.

Error Handling

• TYPES OF ERRORS

– Runtime Errors

–PHP Errors
• E_ERROR: This is a fatal, unrecoverable error.

Examples are out-of-memory errors, uncaught
exceptions, or class redeclarations

• E_WARNING: This is the most common type of
error. It normally signals that something you tried
doing went wrong. Typical examples are missing
function parameters, a database you could not
connect to, or division by zero.

The mysqli_real_connect() function opens a new
connection to the MySQL server.
The mysqli_real_connect() function differs
from mysqli_connect() in the following ways:
•mysqli_real_connect() requires a valid object created
by mysqli_init()
•mysqli_real_connect() can be used with
mysqli_options() to set different options for the
connection
•mysqli_real_connect() has a flag parameter

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Server-side Programming

• The combination of
– HTML
– JavaScript
– DOM 

is sometimes referred to as Dynamic HTML
(DHTML)

• Web pages that include scripting are often
called dynamic pages (vs. static)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Server-side Programming

• Similarly, web server response can be
static or dynamic
– Static: HTML document is retrieved from the

file system and returned to the client
– Dynamic: HTML document is generated by a

program in response to an HTTP request
• Java servlets are one technology for

producing dynamic server responses
– Servlet is a class instantiated by the server to

produce a dynamic response

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Servlets vs. Java Applications

• Servlets do not have a main()
– The main() is in the server
– Entry point to servlet code is via call to a

method (doGet() in the example)
• Servlet interaction with end user is indirect

via request/response object APIs
– Actual HTTP request/response processing is

handled by the server
• Primary servlet output is typically HTML

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Servlet Life Cycle

• Servlet API life cycle methods
– init(): called when servlet is instantiated; must

return before any other methods will be called
– service(): method called directly by server

when an HTTP request is received; default
service() method calls doGet() (or related
methods covered later)

– destroy(): called when server shuts down

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Servlet Life Cycle
Example life cycle method:
attempt to initialize visits variable
from file

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Servlet Life Cycle

Exception to be thrown
if initialization fails and servlet
should not be instantiated

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

• Many interactive Web sites spread user
data entry out over several pages:
– Ex: add items to cart, enter shipping

information, enter billing information
• Problem: how does the server know which

users generated which HTTP requests?
– Cannot rely on standard HTTP headers to

identify a user

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Server sends back
new unique
session ID when
the request has
none

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Client that supports
session stores the
ID and sends it
back to the server
in subsequent
requests

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Server knows
that all of these
requests are
from the same
client. The
set of requests
is known as a
session.

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

And the server
knows that all
of these
requests are
from a different
client.

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Returns HttpSession object associated
with this HTTP request.
• Creates new HttpSession object if no  
 session ID in request or no object with 
 this ID exists
• Otherwise, returns previously created  
 object

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Boolean indicating whether returned
object was newly created or already
existed.

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Incremented once per session

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Three web
pages produced
by a single servlet

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

,,, Session attribute is a
name/value pair

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

,,,

Session attribute will
have null value until
a value is assigned

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

,,,

Generate
sign-in form
if session is
new or
signIn
attribute has no value,
weclome-back page
otherwise.

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Sign-in form

Welcome-back
page

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Second argument
(“Greeting”) used as
action attribute value
(relative URL)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Form will be sent using POST HTTP
method (doPost() method will be called)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Text field containing
user name is named
signIn

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

…
Retrieve
signIn
parameter value

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

…

Normal
processing:
signIn
parameter
is present in
HTTP request

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

…

Generate
HTML for
response

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

Thank-you page Must escape
XML special
characters in
user input

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

…

Assign a
value to the
signIn session
attribute

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

• Session attribute methods:
– setAttribute(String name, Object value):

creates a session attribute with the given
name and value

– Object getAttribute(String name): returns the
value of the session attribute named name, or
returns null if this session does not have an
attribute with this name

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

…

Error
processing
(return user
to sign-in form)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Sessions

• By default, each session expires if a
server-determined length of time elapses
between a session’s HTTP requests
– Server destroys the corresponding session

object
• Servlet code can:

– Terminate a session by calling invalidate()
method on session object

– Set the expiration time-out duration (secs) by
calling setMaxInactiveInterval(int)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

• A cookie is a name/value pair in the Set-
Cookie header field of an HTTP response

• Most (not all) clients will:
– Store each cookie received in its file system
– Send each cookie back to the server that sent

it as part of the Cookie header field of
subsequent HTTP requests

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Tomcat sends
session ID as value
of cookie named
JSESSIONID

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Cookie-enabled
browser returns
session ID as value
of cookie named
JSESSIONID

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

• Servlets can set cookies explicitly
– Cookie class used to represent cookies
– request.getCookies() returns an array of

Cookie instances representing cookie data in
HTTP request

– response.addCookie(Cookie) adds a cookie to
the HTTP response

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Cookies are expired by
client (server can request
expiration date)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Return array of cookies
contained in HTTP request

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Search for
cookie
named
COUNT and
extract value
as an int

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Send
replacement
cookie value
to client
(overwrites
existing cookie)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies

Should call
addCookie()
before writing
HTML

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies 
 Privacy issues

Client

Web site
providing
requested

content

HTTP request to
intended site

HTTP response:
HTML document
including ad

Web site
providing
banner

ads

HTTP request for
ad image

Image
plus Set-Cookie
in response:
third-party cookie

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web site
providing
requested

content

Cookies 
 Privacy issues

Client

Second
Web site
providing
requested

content

HTTP request to 2nd
intended site

HTTP response:
HTML document
including ad

Web site
providing
banner

ads

HTTP request for
ad image plus Cookie (identifies user)

Image Based on
Referer, I know two
Web sites that
this user has
visited

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Cookies 
 Privacy issues

• Due to privacy concerns, many users block
cookies
– Blocking may be fine-tuned. Ex: Mozilla allows

• Blocking of third-party cookies
• Blocking based on on-line privacy policy

• Alternative to cookies for maintaining
session: URL rewriting

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax

• An XML document consists of
– Markup

• Tags, which begin with < and end with >
• References, which begin with & and end with ;

– Character, e.g.
– Entity, e.g. <

» The entities lt, gt, amp, apos, and quot are recognized
in every XML document.

» Other XHTML entities, such as nbsp, are only
recognized in other XML documents if they are
defined in the DTD

– Character data: everything not markup

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax
• Comments

– Begin with <!--
– End -->
– Must not contain –

• CDATA section
– Special element the entire content of which is

interpreted as character data, even if it appears to be
markup

– Begins with <![CDATA[
– Ends with]]> (illegal except when ending CDATA)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax

• The CDATA section  
 
 
 
is equivalent to the markup

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax

• < and & must be represented by
references except
– When beginning markup
– Within comments
– Within CDATA sections

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax
• Element tags and elements

– Three types
• Start, e.g. <message>
• End, e.g. </message>
• Empty element, e.g.

– Start and end tags must properly nest
– Corresponding pair of start and end element tags plus

everything in between them defines an element
– Character data may only appear within an element

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax

• Start and empty-element tags may contain
attribute specifications separated by white
space
– Syntax: name = quoted value
– quoted value must not contain <, can contain

& only if used as start of reference
– quoted value must begin and end with

matching quote characters (‘ or “)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Syntax

• Element and attribute names are case
sensitive

• XML white space characters are space,
carriage return, line feed, and tab

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• A well-formed XML document
– follows the XML syntax rules and
– has a single root element

• Well-formed documents have a tree
structure

• Many XML parsers (software for reading/
writing XML documents) use tree
representation internally

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• An XML document is written according to
an XML vocabulary that defines
– Recognized element and attribute names
– Allowable element content
– Semantics of elements and attributes

• XHTML is one widely-used XML
vocabulary

• Another example: RSS (rich site summary)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• Valid names and content for an XML
vocabulary can be specified using
– Natural language
– XML DTDs (Chapter 2)
– XML Schema (Chapter 9)

• If DTD is used, then XML document can
include a document type declaration:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• Two types of XML parsers:
– Validating

• Requires document type declaration
• Generates error if document does not

– Conform with DTD and
– Meet XML validity constraints

» Example: every attribute value of type ID must be
unique within the document

– Non-validating
• Checks for well-formedness
• Can ignore external DTD

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• Good practice to begin XML documents
with an XML declaration
– Minimal example:
– If included, < must be very first character of

the document
– To override default UTF-8/UTF-16 character

encoding, include encoding declaration
following version:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

XML Documents

• Internal subset of DTD  
 
 
 
 

– Entity vsn will be defined by any XML parser,
validating or not

Declaration of
internal subset of DTD

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Java DOM API defined by org.w3c.dom
package

• Semantically similar to JavaScript DOM
API, but many small syntactic differences
– Nodes of DOM tree belong to classes such as

Node, Document, Element, Text
– Non-method properties accessed via methods

• Ex: parentNode accessed by calling
getParentNode()

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Methods such as
getElementsByTagName() return instance
of NodeList
– getLength() method returns # of items
– item() method returns an item

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Example: program to count link elements in
an RSS document:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Imports:

From Java
API for XML
Processing
(JAXP)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Default parser is non-validating and non-
namespace-aware.

• Overriding: 

• Also setValidating(true)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Java-based DOM

• Namespace-aware versions of methods
end in NS:

Namespace name

Local name

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Chapter 8  
Separating Programming and Presentation: 

JSP Technology

WEB TECHNOLOGIES
A COMPUTER SCIENCE PERSPECTIVE 

 
JEFFREY C. JACKSON

[all concept]

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Why JSP?

• Servlet/CGI approach: server-side code is
a program with HTML embedded

• JavaServer Pages (and PHP/ASP/
ColdFusion) approach: server-side “code”
is a document with program embedded
– Supports cleaner separation of program logic

from presentation
– Facilitates division of labor between

developers and designers

Overview of JSP page components

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example
Default namespace is XHTML

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Also uses two
JSP-defined
namespaces

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

JSP-defined
markup (initialization)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Standard XHTML

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

JSP
scriptlet

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

JSP-based program logic:
initialize and increment variable

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Replaced with value of variable

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Output
XHTML
document
after 3 visits

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

• Used html as root element
– Can use HTML-generating tools, such as

Mozilla Composer, to create the HTML
portions of the document

– JSP can generate other XML document types
as well

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

• Namespaces
– JSP (basic elements, normal prefix jsp)
– Core JSP Standard Tag Library (JSTL)  

(prefix c)
• Tag library: means of adding functionality beyond

basic JSP
• JSTL included in with JWSDP 1.3 version of Tomcat
• JSTL provides tag libraries in addition to core (more

later)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

• JSP elements
– directive.page: typical use to set HTTP

response header field, as shown (default is
text/xml)

– output: similar to XSLT output element
(controls XML and document type
declarations)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

• Template data: Like XSLT, this is the HTML
and character data portion of the document

• Scriptlet: Java code embedded in
document
– While often used in older (non-XML) JSP

pages, we will avoid scriptlet use
– One use (shown here) is to add comments that

will not be output to the generated page

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Example

• Core tag library supports simple
programming
– if: conditional

• empty: true if variable is non-existent or undefined
– set: assignment

• application scope means that the variable is
accessible by other JSP documents, other users
(sessions)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP and Servlets

• JSP documents are not executed directly
– When a JSP document is first visited, Tomcat

1.Translates the JSP document to a servlet
2.Compiles the servlet

– The servlet is executed
• Exceptions provide traceback information

for the servlet, not the JSP
– The servlets are stored under Tomcat work

directory

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP and Servlets

• A JSP-generated servlet has a
_jspService() method rather than doGet()
or doPost()
– This method begins by automatically creating

a number of implicit object variables that can
be accessed by scriptlets

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP and Servlets

• Translating template data:

• Scriptlets are copied as-is to servlet:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP and Servlets

• Sciptlets can be written to use the implicit
Java objects: 
 
 

• We will avoid this because:
– It defeats the separation purpose of JSP
– We can incorporate Java more cleanly using

JavaBeans technology and tag libraries

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP and Servlets

• JSP elements translate to:

• ${visits} in template code translates to
out.write() of value of variable

• Core tags (e.g., if) normally translate to a
method call

JSP default

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• A web application is a collection of
resources that are used together to
implement some web-based functionality

• Resources include
– Components: servlets (including JSP-

generated)
– Other resources: HTML documents, style

sheets, JavaScript, images, non-servlet Java
classes, etc.

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Sharing data between components of a
web application
– Tomcat creates one ServletContext object per

web application
– Call to getServletContext() method of a servlet

returns the associated ServletContext
– ServletContext supports setAttribute()/

getAttribute() methods

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Within Tomcat, all of the files of a simple
web app are placed in a directory under
webapps
– JSP documents can go in the directory itself
– “Hidden” files--such as servlet class files--go

under a WEB-INF subdirectory (more later)
• Once the web app files are all installed,

used Tomcat Manager to deploy the app

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications
• Deploying a web app consisting of a single JSP

document HelloCounter.jspx:
– Create directory webapps/HelloCounter
– Copy JSP doc to this directory
– Visit localhost:8080/manager/html
– Enter HelloCounter in “WAR or Directory URL” box

and click Deploy button
• Web app is now at URL localhost:8080/

HelloCounter/ 
HelloCounter.jspx

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Manager app:
– Stop: web app becomes unavailable (404

returned)
– Start: web app becomes available again
– Reload: stop web app, restart with latest

versions of files (no need to restart server)
– Undeploy: stop app and remove all files!

• Always keep a copy of app outside webapps

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Set parameters of a web application by
– Creating a deployment descriptor (XML file)
– Saving the descriptor as WEB-INF/web.xml

• Simple example web.xml:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Some examples:
– Setting an initial value accessible by

application.getInitParameter():

– Setting the length of time (in minutes) before a
session times out:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Mapping URLs to app components:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• There are four URL patterns (from high to
low precedence)

• If no URL pattern matches, Tomcat treats
path as a relative file name

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

Web Applications

• Methods on request object for obtaining
path information:
– Example: /HelloCounter/visitor/test.jsp
– getContextPath(): returns /HelloCounter
– getServletPath(): returns /visitor
– getPathInfo(): returns /test.jsp

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• ${visits+1} is an example of an EL
expression embedded in a JSP document
– ${…} is the syntax used in JSP documents to

mark the contained string as an EL expression
– An EL expression can occur

• In template data: evaluates to Java String
• As (part of) the value of certain JSP attributes:

evaluates to data type that depends on context

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• EL literals:
– true, false
– decimal integer, floating point, scientific-

notation numeric literals
– strings (single- or double-quoted)
– null

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• EL variable names: like Java
– Can contain letters, digits, _ , and $
– Must not begin with a digit
– Must not be reserved:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)
• EL operators:

– Relational: <, >, <=, >=, ==, !=
• Or equivalents: lt, gt, le, ge, eq, ne

– Logical: &&, ||, !
• Or equivalents: and, or, not

– Arithmetic:
• +, - (binary and unary), *
• /, % (or div, mod)

– empty: true if arg is null or empty string/array/Map/
Collection

– Conditional: ? :
– Array access: [] (or object notation)
– Parentheses for grouping

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• EL automatic type conversion
– Conversion for + is like other binary arithmetic

operators (+ does not string represent
concatenation)

– Otherwise similar to JavaScript

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• EL provides a number of implicit objects
• Most of these objects are related to but not

the same as the JSP implicit objects
– JSP implicit objects cannot be accessed

directly by name in an EL expression, but can
be accessed indirectly as properties of one of
the EL implicit objects

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• pageContext: provides access to JSP implicit
objects
– Ex: EL expression pageContext.request is reference to

the JSP request object
• page: JSP implicit object representing the servlet

itself
• JSP objects page, request, session, and

application all have getAttribute() and
setAttribute() methods
– These objects store EL scoped variables (e.g., visits)

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)
• Reference to non-implicit variable is resolved by

looking for an EL scoped variable in the order:
– page
– request
– session
– application

• If not found, value is null
• If found, value is Object

– JSP automatically casts this value as needed

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• All EL implicit objects except pageContext
implement Java Map interface

• In EL, can access Map using array or
object notation:
– Servlet: request.getParameter(“p1”)
– EL:  

 param[‘p1’]  
or 
 param.p1

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• Array/List access:
If EL scoped variable aVar represents

• Java array; or
• java.util.List

and if EL scoped variable index can be cast to
integer

then can access elements of aVar by
• aVar[index]
• aVar.index

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

JSP Expression Language (EL)

• Function call
– Function name followed by parenthesized,

comma-separated list of EL expression
arguments

– Tag libraries define all functions
– Function names usually include a namespace

prefix associated with the tag library

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• Many web apps are based on the Model-
View-Controller (MVC) architecture pattern

Controller

Model Components

View

HTTP
request

HTTP
response

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• Typical JSP implementation of MVC

Controller
(Java servlet)

Model Components
(beans, DBMS)

View
(JSP document)

HTTP
request

HTTP
response

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• Forwarding an HTTP request from a
servlet to another component:
– By URL

– By name

Ex: /HelloCounter.jspx

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• How does the controller know which
component to forward to?
– getPathInfo() value of URL’s can be used
– Example:

• servlet mapping pattern in web.xml:

• URL ends with:
• getPathInfo() returns:

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• JSP include action (not the same as the
include directive!)

Execute specified
component and
include its output
in place of the
include element

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

MVC

• Adding parameters to the request object
seen by an included component:

request object seen by navbar.jspx will include
parameter named currentPage with value home

Week 14 [just concept]

IT230
Dr Mohamed Habib

JDBC

JDBC provides a standard library for accessing relational databases.
By using the JDBC API, you can access a wide variety of SQL
databases with exactly the same Java syntax. It is important to
note that although the JDBC API standardizes the approach for
connecting to databases, the syntax for sending queries and
committing transactions, and the data structure representing the
result, JDBC does not attempt to standardize the SQL syntax. So,
you can use any SQL extensions your database vendor supports.
However, since most queries follow standard SQL syntax, using
JDBC lets you change database hosts, ports, and even database
vendors with minimal changes to your code.
 
 

JDBC

Seven Steps for Database Access

– Load the JDBC driver
– Define the connection URL
– Establish the connection
– Create a Statement object
– Execute a query or update
– Process the result set
– Close the statement and connection

concept

JDBC

Adv. Of Prepared Statements

Be cautious though: a prepared statement does not always
execute faster than an ordinary SQL statement. The
performance improvement can depend on the particular SQL
command you are executing. For a more detailed analysis of
the performance for prepared statements in Oracle.
 
However, performance is not the only advantage of a prepared
statement. Security is another advantage. We recommend that
you always use a prepared statement or stored procedure to
update database values when accepting input from a user
through an HTML form. This approach is strongly recommended
over the approach of building an SQL statement by
concatenating strings from the user input values.  
 

concept

Adv. Of Prepared Statements

Creating Callable Statements

With a CallableStatement, you can
execute a stored procedure or function in
a  
database. For example, in an Oracle
database, you can write a procedure or
function in PL/SQL and store it in the
database along with the tables. Then, you
can create a connection to the database
and execute the stored procedure or
function through a CallableStatement. 
 

concept

Adv. Of Callable Statements

A stored procedure has many advantages.
For instance, syntax errors are caught at
compile time instead of at runtime; the
database procedure may run much faster
than a regular SQL query; and the
programmer only needs to know about the
input and output parameters, not the table
structure. In addition, coding of the stored
procedure may be simpler in the database
language than in the Java programming
language because access to native database
capabilities (sequences, triggers, multiple
cursors) is possible. 
 

DisAdv. Of Callable Statements

One disadvantage of a stored procedure
is that you may need to learn a new
database-specific language (note,
however, that Oracle8i Database and
later support 
stored procedures written in the Java
programming language).
A second disadvantage is that the
business logic of the stored procedure
executes on the database server instead
of on the client machine or Web server.

Creating Callable Statements

Using Database Transactions

When a database is updated, by default the
changes are permanently written (or  
committed) to the database. However, this
default behavior can be programmatically
turned off. If autocommitting is turned off and
a problem occurs with the updates, then each
change to the database can be backed out (or
rolled back to the original values). If the
updates execute successfully, then the changes
can later be  
permanently committed to the database. This
a p p r o a c h i s k n o w n a s t r a n s a c t i o n

management.

concept

Using Database Transactions

The default for a database connection is
autocommit; that is, each executed
statement is automatically committed to
the database. Thus, for transaction
management you first need to turn off
autocommit for the connection by calling
setAutoCommit(false) .

Using Database Transactions

• Here, the statement for obtaining a
connection from the DriverManager
is outside the try/catch block. That
way, rollback is not called unless a
connection is successfully obtained.
However, the getConnection method
can still throw an  
SQLException and must be thrown by
the enclosing method or be caught in
a separate try/catch block.

